PXIE MEBT Buncher Cavity

Pre-Design Review

Goals

It is an initial phase of the cavity design efforts. The goal is, based on the existing FRS (docbase #1071), to converge of the technical specifications for the cavity, define ways how elements of the cavity should be designed, and what fabrication (including brazing and finishing) and acceptance (including low-power intermediate RF measurements) steps are needed for commissioning.

FRS

PXIE docbase #1071

General			
	Minimum beam aperture (ID), mm	30	
	Overall module length; flange-to-flange, m	≤0.35 •	A request to make it smaller
	Positioning accuracy relative to the projected beam trajectory: X, Y, Z, RMS, mm Pitch and Yaw, RMS, mrad	0.5 3	
	Cavity vacuum at the operating voltage with no beam, Torr	≤1e-8 •	Backing, surface finish,
Cavity			pumping speed
	Frequency, MHz	162.5	
	Operating mode	CW •	_
	Operating temperature, °C	35	
	Nominal accelerating voltage at beta=0.067, MV	0.07	
	Maximum accelerating voltage at beta=0.067, MV	0.10	Cooling
	Power loss at maximum voltage, kW	≤3	
	Frequency tuning range, kHz	100	
	Maximum water supply pressure, Bar	20 •	

Each cavity must have a provision for use of the next instrumentation:

- Cavity field probe.
- RF coupler e-probe.
- Cavity vacuum monitor

Status as of June 08, 2012

I. Terechkine

4

7/10/2012

MEBT Layout

Integration in the Beam Line

Central Electrode: Cooling

Uniform Heat influx density 20,000 W/m². Total Heat flux ~1100 W. Water velocity at the input is 2 m/s \rightarrow 1.6 GPM

Cooling - Simple

I. Terechkine

7/10/2012

Simplified Geometry of the Central Electrode

Satisfactory results of the cooling study allow using simplified geometry of the cavity: conical stem with round cross-section (Meiyu)

U = 100 kV
P = 1100 W on the central electrode
v = 2 m/s; Diff pressure in the channel − 5700 Pa
Water Flux = 1.76*10⁻⁴ m³/s = 0.176 l/s → 2.8 GPM
Heat through convection = 860 W
Total power loss in the cavity = ~1.5 kW

7/10/2012

Temperature across the channel

During the Design Stage

- 1. Get all tuners and power couplers;
- 2. Decide on a size of all flanges;
- 3. Decide of the brazing procedure: materials and sequencing;
- 4. Make a mockup and test water cooling of the central electrode;
- 5. Define surface finish and fabrication tolerances;
- 6. Define surface cleaning procedures;
- 7. Decide on water pressure and flow gauges \rightarrow buy;
- 8. Decide on temperature gauges (type and location) \rightarrow buy;
- 9. Make a list of potential vendors;
- 10. Start planning for training and testing;